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There was a question today in lecture about how to “derive” entropy and
information theory. This (optional) note elaborates on my answer.

There are a number of approaches to justifying the use of the entropy formula

H[X] = −
∑

x

Pr (X = x) log2 Pr (X = x)

and the information formula

I[X;Y ] = H[Y ]−H[Y |X]

for our purposes.

1. Pragmatic. Mathematically, this set of ideas lets us prove nice and in-
teresting theorems, and empirically doing things like feature-selection by
means of information content leads to good results.

2. Analogical. The entropy formula appears in statistical physics, where it
measures (roughly speaking) the number of ways you can arrange molecules
into configurations with given macroscopic properties (the probability dis-
tribution). One could think of this as something like the uncertainty in
the molecular configuration.

Of course, there are many analogies one could make, so the use of any
particular analogy has to be justified by something else.

3. Theoretical unification. Though I did not go into this, it’s possible to
re-frame large parts of ordinary statistics, like maximum likelihood esti-
mation and Bayesian updating, with an information-theoretic vocabulary.
This is essentially because the entropy is the expected value of the log-
likelihood under the true model. (More on this below.)

Of course, there are many conceptual frameworks within which you could
unify different bits of applied math, so the use of any particular set of
unifying concepts and terms needs to be justified by something else.
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4. Axiomatics. One could bgin by postulating a certain set of plausible-
sounding axioms, in this case for a measure of information or uncertainty,
and then show that the entropy is the unique object satisfying those ax-
ioms.

I will say a bit more about this approach, and its limits, in the next section.

1 The Khinchin Axioms for Entropy

I got the set of axioms for entropy a bit wrong at the board. Here are the right
ones (Khinchin, 1957).

Let X be a discrete random variable, taking k distinct values. Without
loss of generality, let these be the integers 1, 2, . . . k, and abbreviate Pr (X = i)
as pi. We want to boil this distribution down to a single real number, H[X],
and assert that the latter must obey certain axioms. We define, by way of
abbreviation, that H[X, Y ] is H of the two-component random variable (X, Y ),
that H[Y |X = x] is the H of the conditional distribution Pr (Y |X = x).

1. H[X] depends only on the probability distribution of X. (That is, we can
change the labels of the events as much as we like without changing H.)

2. H[X] is maximal, for a given k, when pi = 1/k for all i. (That is, the
uniform distribution has maximal H.)

3. If Y is random variable on 1, 2, . . . m, where m > k, but Pr (Y = i) = pi

if i ≤ k, and Pr (Y = i) = 0 if k < i ≤ m, then H[Y ] = H[X]. (That is,
notionally adding possibilities of probability zero does not change H.)

4. For any random variables X and Y ,

H[X, Y ] = H[X] +
∑

x

Pr (X = x) H[Y |X = x] (1)

(That is, our joint H is the sum of the H for one variable, plus the average
value of the H of the other variable given the first.)

It can be shown (Khinchin, 1957, p. 9–13) that a function H[X] satisfies these
axioms if and only if it has the form

H[X] = −
∑

i

pi logb pi (2)

for some base b > 1. This is called the Shannon or Gibbs-Shannon entropy,
where we generally chose either b = 2 (in computer science and information
theory) or b = e (in statistical mechanics and theoretical statistics).

If we think of these axioms as being about an indicator of uncertainty or
variability in X, the first three seem reasonable, once we grant that it makes
sense to measure the uncertainty of any random variable on a common numerical
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scale with that of any other. They say that swapping labels or names of events
doesn’t really change how uncertain we are about the events1, that we’re most
uncertain when there is no probabilistic basis for expecting any one outcome
more than any other, and that considering possibilities we know won’t happen
doesn’t actually make us more or less uncertain. So far so good, presuming, of
course, that it makes sense to rank the “uncertainty” of any random variable
against that of any other, on a common numerical scale.

The last axiom, however, is not so reasonable looking. It says that uncer-
tainty is additive, and it says that it is additive in a particular strict way, that
the means of conditional uncertainties add up to total uncertainty. Notice that
it is strictly stronger than asserting that

H[X, Y ] = H[X] + H[Y ] (3)

when X and Y are independent. (Exercise: Show that Eq. 1 implies Eq. 3
when X and Y are independent.) That weaker axiom would say that if we
had two independent coin-tosses, we are twice as uncertain about the pair as
we are about any one of them, which doesn’t sound too outlandish.2 But the
actual fourth axiom, once again, is stronger than this, and asserts a lot about
the treatment of dependent events. We might instead consider a rule where

H[X, Y ] = H[X] + max
x

H[Y |X = x] (4)

where our joint uncertainty depends on the maximum conditional uncertainty.
(Exercise: Show that Eq. 4 implies Eq. 3 when X and Y are independent.)

(Problem: Can you find a functional which satisfies the other four axioms
and Eq. 4? If not, can you prove that it’s impossible?)

The stronger fourth axiom is needed to derive the Shannon form of the
entropy, Eq. 2. If we just use Eq. 3 instead, any function of the form

Hα[X] =
1

1− α
log

k∑
i=1

pα
i (5)

where α ≥ 0, will satisfy the axioms. (Once again, I got the form wrong at
the board.) These are known as the Rényi entropies, and there are, clearly,
infinitely many different ones. Since Khinchin’s fourth axiom is a special case of
the additive-if-independent rule, the Shannon entropy should be a special case
of the Rényi entropy, and it is, where α = 1. (As α → 1, Eq. 5 goes to 0/0; you

1Suppose that my favorite pen is either in my house or my office, which are a mile apart,
and these are equally likely; and that my house-keys are either with me in the immigration
line in Newark, or on the night-stand in the Hotel Pulaski in Brussels, and again these are
equally likely. Do I really have the same degree of uncertainty whether the margin of error is
a mile or 3700 miles?

2But is it actually so luminously certain and correct that anyone must be thirty-two times
as uncertain about the outcome of thirty-two independent and identically-distributed coin-
tosses as they are about one? If I claimed that I was only five times as uncertain, would
that really force me to run around going “Error! Error! Does not compute!” until my head
exploded?

3



recover the Shannon formula (2) by using L’Hopital’s rule.) Starting from the
Rényi entropy, one can define Rényi information,

Iα = Hα[X] + Hα[Y ]−Hα[X, Y ]

and so forth, through the rest of the formal structure of information theory.
Crucially, however, a lot of the connections to coding theory, to statistics, and
to the limit theorems (“large deviations principles”) of probability theory grow
weaker, or even break down. There are situations in dynamical systems theory
where the Rényi entropies and informations are very useful (Badii and Politi,
1997; Beck and Schlögl, 1993), but the stronger and less “natural” axiom leads
to a much more fruitful theory.

1.1 Remarks on Attempts at Axiomatic Foundations

Many people find themselves more comfortable with pieces of mathematics if
they can be derived from a small set of axioms, in the way Khinchin derived
entropy from his axioms. As I have tried to suggest, I think this is a mistake.
This only provides more security if the axioms themselves are secure. Said
another way, it only pushes the problem back a stage, from “why should I use
this math?” to “why should I accept these axioms, and not others?” The point
was well-made by Alfred North Whitehead and Bertrand Russell, two people
who certaintly understood axiomatic systems, almost a century ago (Whitehead
and Russell, 1925–27):

... the chief reason in favour of any theory on the principles of
mathematics must always be inductive, i.e., it must lie in the fact
that the theory in question enables us to deduce ordinary mathemat-
ics. In mathematics, the greatest degree of self-evidence is usually
not to be found quite at the beginning, but at some later point;
hence the early deductions, until they reach this point, give reasons
rather for believing the premises because true consequences follow
from them, than for believing the consequences because they follow
from the premises.

The same point is made, at some length, by Herbert Simon in The Sciences
of the Artificial (Simon, 1996), which as I said in lecture is the best book to
ever come out of this university and something you should all read as soon as
possible.

There are advantages to axiomatic characterizations of bits of math. The
first is that of clarity and summarization: the axioms are just enough to give the
results; one does not need to assume more, and one has to assume that much.
The second is abstraction (again): any system where the axioms hold (under
some interpretation of their terms) is one where the theory is true (under that
interpretation). This lets us study for example, linear systems theory with-
out worrying too much whether the variables in the linear system are voltages
and currents, or chemical fluxes and potentials, or positions and velocities of
mechanical elements, etc., etc.
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Nonetheless, ultimately axiom systems derive their value from what they
let us prove, and so from the value of the math they formalize, rather than
anything else. The universe, even the universe of mathematics, is under no obli-
gation to make plausible- or beautiful- sounding axioms relevant. If anything,
mathematicians re-shape their ideas of what is beautiful

2 Entropy, Relative Entropy, and Likelihood

In addition to the entropy, the other basic quantity of information theory is the
relative entropy, also known as the Kullback-Leibler (KL) divergence:
for two distributions P and Q over the same set of values,

D(P‖Q) =
∑

x

P (x) log
P (x)
Q(x)

(6)

It is not hard to show (there are a couple of ways of doing so!) that D(P‖Q) ≥ 0,
and that D(P‖Q) = 0 if and only if P = Q. One interpretation of D(P‖Q) is
therefore how different the distributions P and Q are.

Ordinary entropy can be defined in terms of the relative entropy (though
not vice versa). If P is the distribution of X, and U is the uniform distribution
on the same k values, then

H[X] = log k −D(U‖P )

(Exercise: Show this.) The mutual information can also be directly defined
in terms of the relative entropy. Let P be the marginal distribution of X, Q
the marginal distribution of Y , J the actual joint distribution, and P ⊗ Q the
product of the marginal distributions. Then

I[X;Y ] = D(J‖P ⊗Q)

(Exercise: Show this.)
The divergence D(P‖Q) is sometimes interpreted as the gain in information

if we think the distribution is Q and we learn it is actually P ; this would make
the mutual information how much we learn if we realize that X and Y are not
actually independent. Once again, however, it is not exactly obvious that this
is the right way to formalize “gain in information”, as opposed to, e.g.,∑

x

|P (x)−Q(x)|

A different interpretation of relative entropy comes from thinking about
description lengths and coding. Remember that H[X] is the average number
of bits needed to describe the value of X, when we chose our coding scheme to
minimize the description length. We code the value x using − log2 Pr (X = x)
bits. Suppose we think the distribution is Q(x) and chose our coding scheme
accordingly. Then the actual expected description length will be

−
∑

x

P (x) log2 Q(x) = H[X] + D(P‖Q) (7)
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That is, we will waste D(P‖Q) bits, on average. The quantity on the left-
hand side of Eq. 7 is also known as the cross-entropy. (Exercise: Prove
Eq. 7.) Minimizing our mean description length is the same task as minimizing
D(P‖Q).

Finally, we can connect the relative entropy and the cross-entropy to the
likelihood. If we use a statistical model to get our probability distribution, this
model will generally have some parameter θ, making the distribution Qθ(x). If
the true distribution is P (x), then the expected log-likelihood will be

E[L(θ)] =
∑

x

P (x) log Qθ(x)

which is just minus the cross-entropy. (Or minus the cross entropy times a
constant if we take the log of the likelihood to a base other than 2. Assume we
use base 2.) Since log is an increasing function, maximizing the likelihood is the
same as maximizing the log-likelihood. So maximizing expected likelihood is
the same as minimizing D(P‖Qθ), or minimizing expected description length.
Since D(P‖P ) = 0, the entropy is the expected log-likelihood of the true model.

The problem with statistical inference is that we don’t know the actual
distribution P , but just have a sample from it, x1, x2, . . . xn. We can turn this
into an empirical distribution P̂n, where probability is proportional to the
number of samples:

P̂n(x) =
1
n

n∑
i=1

1x(xi) (8)

Assuming the samples are IID, we can write the actual log-likelihood in terms
of the empirical distribution:

Ln(θ) =
n∑

i=1

log Qθ(xi) = n
∑

x

P̂n(x) log Qθ(x) (9)

(Exercise: prove this.) Using our previous result,

−Ln(θ) = nH[P̂n] + nD(P̂n‖Qθ) (10)

So maximizing the likelihood will work well when D(P̂n‖Qθ) ≈ D(P‖Qθ). More
exactly, if

argmin
θ

D(P̂n‖Qθ) → argmin
θ

D(P‖Qθ) (11)

then the maximum likelihood estimate will converge on the optimal value of θ.
If we make a few assumptions about P (basically, that it is not too nasty) and
about Qθ (basically, that it is not too crazy, and changes smoothly with θ),
then the law of large numbers gives us Eq. 11. (For purists: with convergence in
probability under the weak law of large numbers, and almost sure convergence
under the strong.)

Another way to frame all this is to measure distance between probability
distributions with the relative entropy, and think about the geometry this in-
duces. Maximizing the likelihood then becomes finding the value of θ such that
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Qθ is as close as possible to P̂n. That is, the maximum likelihood estimate is
the projection of the data on to our family of distributions. As n grows, the
law of large numbers forces P̂n to be closer and closer to P , so the projections of
these points should become closer and closer as well. The more a small change
in θ leads to a big change in Qθ — the more curved the family of probability
distributions is — the more precisely we can estimate θ. Stated precisely, this
turns out to be the Cramér-Rao inequality of theoretical statistics. This is the
idea of information geometry.

However, there is nothing especially magical (as opposed to convenient)
about IID samples. Basically, whenever we can show that D(P̂n‖Qθ) → D(P‖Qθ)
for a big enough range of θ, likelihood procedures will end up working well. For
example, you can do the same things for Markov processes, using the ergodic
theorem instead of the law of large numbers (Kulhavý, 1996). People in applied
fields sometimes have the impression that independent samples are required for
statistical procedures to work. They are wrong.

Further reading. There are a number of good books on the connections
between information theory and statistics. Maybe the easiest one to read is one
on information geometry and its extensions to things like Markov processes:
Kulhavý (1996). Kullback’s own book, Kullback (1968), like most books on
information geometry (Kass and Vos, 1997; Amari and Nagaoka, 1993/2000),
assumes an advanced knowledge of theoretical statistics.
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